

Chronic Obstructive Pulmonary Disease

Pathophysiology

- COPD is characterized by airflow obstruction that is caused by chronic bronchitis or emphysema
- The obstruction is caused by inflammation which changes the structural function of the lung making it harder to expire CO2
- The air becomes trapped causing the chest to hyperexpand and become barrel shaped. This prevents more air from being expired
- Because of low expiration the pt will become hypercaphic (high CO2) and hypoxic (low O2)
- The excess pressure can damage alveoli further causing a snowball effect of decreased function

Risk Factors

- Smoking the major risk factor for developing COPD hyperplasia, high mucus, low cilia
- Occupational chemicals and dusts dusts, vapors, irritants and fumes can increase the risk of COPD
- Air Pollution urban air pollution coal and biomass fuels used for heating
- Infection recurring infections in childhood are linked to reduced function
- Genetics or
- AAT Deficiency liked to poor lung function
- Aging loss of renal, stiffening of chest wall and impaired gas exchange
- Asthma can be secondary to COPD or contribute to progression of

Possible Complications

- Pulmonary insufficiency impaired gas exchange d/t backflow from the pulm. artery to right ventricle
- Pulmonary hypertension excess pressure in lungs
 - Tx: diuretics, vasodilators, anticoagulants and Ca++ channel blockers
- Acute exacerbation worsening of symptoms
 - Tx: assess ABGs, maintain fowler's position, suction airway if necessary.
 - Cor pulmonated r ventricle hypertrophy
 - Tx: treated with diuretics and management of underlying cause

Signs and Symptoms

Early Stages

- Symptoms develop slowly chronic intermittent cough
- Dyspnea that increases in severity
- Inability to take a deep breath
- Prolonged expiration and low lung sounds

Diagnosis

- History and physical exam
- Spirometry required
- Chest x-ray
- **Late Stages**
- Dyspnea at rest
- Relies on accessory muscles to breathe
- Wheezing and chest tightness
- Fatigue, weight loss and anorexia
- A1 antitrypsin levels (AAT)
- Blood gases in severe stage
- 6 min walk test

Spirometry measures FEV

Low FEV1 = high obstruction

FEV1/FVC <70% = COPD

FEV1 = forced expiratory volume/ 1 sec

Classification	Severity	FEV ₁	
Stage I	Mild ≥80% predict		
Stage II	Moderate	50-80% predicted	
Stage III	Severe 30-50% predicte		
Stage IV	Very Severe	<30% predicted	

Treatment

Minimally Invasive

- Smoking cessation
- Airway clearance techniques
- Hydration (if indicated)
- Long-term O2 (if indicated)
- Exercise plan esp. walking and upper body

Pharmacological

- Bronchodilators low dyspnea and high FEV1
- Anticholinergics exacerbations
- Corticosteroids

Diagnosis

- History and physical exam
- Spirometry required
- Chest x-ray
- A1 antitrypsin levels (AAT)
- Blood gases in severe stage
- 6 min walk test

Surgical

- Lung volume reduction
- Bullectomy
- Lung transplant

Pulmonary Rehab

low

- Exercise training ambulation and upper limb exercises
- Smoking cessation
 - Nutrition counseling
- Education importance of sleep and good nutrition

Nursing Management

Assessment

Subjective Data

- Hx of exposure to pollutant / irritants?
- Hx of recent infection or hospital stay?
- Do they use O2 therapy?
- Medications they're on?
 - Bronchodilators
 - Corticosteroids
 - Anticholinergics
 - Abx
 - OTC
- Smoker? pack years/ quit date
- Weight loss or anorexia?
- Exercise/ activity level?
- Anxiety/depression?
- Sleep pattern?

Objective Data

- General
 - Restlessness, sitting upright
- Integument
 - Cyanosis, poor turgor, clubbing, bruising, edema, thin skin

fatigue,

- Respiratory
 - Rapid and shallow breathing, prolonged exp., low breath sounds, accessory muscle breathing, low diaphragm movement, resp. acidosis
- Cardiovascular
 - Tachycardia, jugular vein distention, edema in feet, dysrhythmias

Planning

Diagnosis

- Ineffective breathing pattern
- Impaired gas exchange
- Ineffective airway clearance

GOAL

- Prevent disease progression
- Maintain ability to care for self
- Relieve symptoms
- Avoid complications

Implementation

Interventions

- Counsel smoking cessation
- Breathing retraining
 - Pursed-lip (PLB) to prolong expiration – easier to learn and should be 1st choice in acute situation.
 - Diaphragmatic breathing use of abdomen instead of accessory muscles to prevent fatigue and slow R rate.
- Airway clearance (ACTs) loosen mucus/secretions then cleared by huff coughing
- Chest physiotherapy (CPT) percussion/vibration loosens mucus
- Postural drainage

Education

- Encourage pt to avoid or control exposure to pollutants
- Caution pt to avoid others who are sick and practice good hand hygiene
- Explain importance of reporting changes in condition to HCD
- Remind pt to follow O2 therapy as ordered to prevent oxygen toxicity
- Suggest nutritional meal options

Evaluation

Assess need to change flow rate

repositioning to drain secretions from specific areas Evaluate compliance to meds Monitor for signs of complications Determine O2 therapy effectiveness

Oxygen Delivery

Device	Flow Rate & FiO2%	Treatment Usage	Disadvantages	Advantages
Nasal Cannula	1-6 LPM – 24%-44% FiO2	Long Term	Can cause dermatitis and mucosal drying	Patient can talk and eat – safe and simple inexpensive
Simple Mask	6-12 LPM - 30%-50% FiO2	Short Term (<4hrs)	Can build up on low flow rates – mask must fit snug and an cause claustrophobia	Can have humidification added
Non- Rebreather	10-15LPM – 60%-90% FiO2	Short Term (<4hrs)	Can be uncomfortable on pts face	High FiO2% - expired air escapes easily
Oxymizer	8 LPM – 30%-60% FiO2	Long Term	Breathing pattern affects FiO2%	High FiO2 comfortabl – pt can eat, drink and speak easily
Big-valve Mask	15+LPM – 90% FiO2	Emergent situations only	Requires manual ventilation	High %FiO2 fo unconscious patients
Nasal Cannula	Variable: 4 LPM = 24-28% 8 lpm = 35-40% 12LPM = 50-60%	Short Term	Can be claustrophobic – patient can't eat, drink or talk	Precise FiO2 adjustment – doesn' require humidification

Complications of Oxygen Therapy

Combustion

 O2 causes a huge fire risk because it accelerates the rate of combustion. Patients should know to keep away from open flame and smoke.

O2 Toxicity

- High levels of oxygen can inflammatory cause an damages which response alveolar-capillary membranes. can cause This severe pulmonary edema and hypoxemia. Patients receiving >60% should be monitored closely

CO2 Narcosis

 COPD patients can develop a high tolerance for CO2 levels which leaves hypoxemia as the only stimulus to breathe. Delivering excessive oxygen can reduce the stimulus to breathe which is even more harmful.

Infection

- Heated nebulizers pose greatest risk for bacteria growth d/t heat and humidity
- Educate pt how to properly clean or replace equipment